
 

 

Abstract-This paper presents a study for validation of real-time 
three-dimensional ultrasound as a diagnostic tool in patients 
with primary pulmonary hypertension. Dynamic analysis of the 
heart is performed via quantification of right and left ventricle 
volumes. Segmentation of ventricular cavities is performed via a 
deformable-model for a set of denoised frames spread over an 
entire cardiac cycle. Spatio-temporal denoising is carried out by 
brushlet analysis that has been optimized by incorporating 
space and time coherence in texture characterization. 
Quantitative measures for right and left ventricular ejection 
fraction are compared to clinical MRI of the same patients.  
Keywords - Segmentation, echocardiography, denoising, RV 
volume, LV volume, brushlet. 

I. INTRODUCTION 

Quantification of ventricular volume from standard two-
dimensional echocardiography is commonly performed via 
planar measurements and use of a geometric model for 
volume estimation. This method is routinely applied in 
clinical practice for assessment of left ventricular (LV) 
volume and ejection fraction. The left ventricle has an 
ellipsoidal shape with strong symmetry along a central axis, 
which allows volume estimation from 2D echocardiographic 
images using geometrical models. On the other hand, the 
right ventricle is crescent shaped and does not show any axis 
of symmetry. For this reason, right ventricular volume cannot 
be estimated from planar views and its function is not well 
quantified during an echocardiographic examination. Some 
cardiac pathologies such as congenital heart disease and 
primary pulmonary hypertension (PPH) can result in an 
increase of the right ventricular volume and affect pumping 
function on the right side while, at least in the initial phase of 
the condition, the left ventricle volume and ejection fraction 
remain normal. In such a situation, assessment of right 
ventricular function would be useful for early diagnosis and 
accurate assessment of the severity of the pathology.  
The recent introduction of real-time three-dimensional 
(RT3D) ultrasound can overcome limitations associated with 
planar and early generations of 3D ultrasound by acquiring an 
entire cardiac volume at once using a matrix phased array [1]. 
With this new probe, since no reconstruction is required, right 
and left cavities can be segmented directly from the acquired 
data. The main drawback of RT3D ultrasound is its very 
limited resolution in B-scan mode, the high level of speckle 
noise embedded in the data and the artifacts introduced by the 
1:16 downsampling scheme for the (transmitter/receiver) 
volumetric scanning.  
We have previously developed a denoising tool adapted to 
the true four-dimensional nature of RT3D ultrasound data. 
We have shown that a two-dimensional deformable model 
applied to denoised RT3D ultrasound can provide accurate 
LV volume measures in healthy patients [2]. This study 
presents some new insights on the spatio-temporal denoising 
scheme using multiscale brushlet analysis. We have 

optimized the denoising process by exploiting both time and 
space coherence. Extensive testing of analysis parameters 
was performed to optimize the contrast of the denoised data 
while preserving textural appearance of the myocardium.  
This study also presents quantitative analysis of LV and RV 
function using two-dimensional deformable model 
segmentation on denoised RT3D ultrasound data. We 
compared ejection fraction measures to manual tracings on 
both RT3D ultrasound and MRI. The ultimate goal of this 
study is to construct patient-specific accurate dynamic 
models of the heart using RT3D ultrasound and validate this 
new modality for clinical echocardiographic screening.  

II. METHODOLOGY 

Quantification of ventricular volumes from RT3D ultrasound 
data included denoising via brushlet expansion in space and 
time and segmentation of the denoised data with a 2D 
deformable model [2]. Both denoising and segmentation were 
optimized from their original implementation to better 
accommodate the properties of RT3D ultrasound signal, as 
presented below.  

Spatio-temporal denoising of RT3D ultrasound 

When performing denoising, it is crucial to get reliable model 
of the nature of the noise. Backscattering of echo signals 
create interference patterns in the acquired signal called 
speckles. These speckles degrade the resolution of a signal 
and corrupt the specificity of gray level intensities. Fully 
developed speckle noise in envelope-detected ultrasound 
signals can be modeled by a Rayleigh distribution [3, 4]. The 
Rayleigh density function ( )p X of the envelope signal X  
is given by: 
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where 2σ  is the backscattered energy of the echo signal. We 
have tested and validated this noise model on in-vitro 
phantom data acquired in a tank of water. Mapping of the 
Rayleigh distribution on slice histograms, via maximum 
likelihood estimation of the parameter σ showed a very 
strong correlation between the model and the data. Once the 
Rayleigh model was validated for speckle noise distribution, 
the ultrasound signal could be further modeled as [5]: 

 *X f f n= + , (2) 

where X  is the observation, f  is the true signal and n  is a 
random noise component with zero mean, uncorrelated with 
f . Using this model we can approximate the variance of the 

noise component n  in homogeneous areas via local statistics 
derived from the observation signal X . The noise variance 
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nσ  is a parameter of the mean value of the signal f  and is 

approximated at pixel (i,j) by:  

, , ,

2 2
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where 
,i jXµ and 

,

2
i jXσ  are the local mean and variance of the 

observation signal X  estimated at pixel (i,j). From this 
model, the noise process n  can be estimated as: 

( )n X f f= − . (4) 
We tested this model on clinical RT3D ultrasound data. The 
signal component f  was estimated via local averaging. The 
model of Equation (4) provided a good estimation of the 
random noise component n  without discernable structural 
patterns. We also estimated the noise variance using Equation 
(3). These results are illustrated in Figure 1 below. 
 
 
 
 
 
 
Fig. 1. Modelization of speckle noise component. (a) Original slice, (b) noise 
variance, (c) coherent energy process, (d) random noise component with no 

structural pattern.  

With a reliable noise model, we were able to optimize 
brushlet denoising by adapting the thresholding level to noise 
variance. This methodology was inspired by the optimal 
minimax approach used in standard wavelet denoising 
procedures.  
After performing empirical testing on RT3D clinical data, we 
concluded that minimax hard-thresholding performed better 
than non-adaptive hard and soft thresholding at removing 
speckle noise while enhancing myocardial walls. This 
resulted in denoised data with better contrast and excellent 
preservation of the original texture of cardiac muscle.  An 
illustration of spatial denoising in 3D using fixed and 
adaptive hard thresholding is provided in Figure 2 below.  
 
 
 
 
 
 
Fig. 2. Spatial denoising of RT3D ultrasound via hard thresholding (HT). (1) 
Original slice, (2) denoised slice via HT at 25% of coefficient maxima and 
(3) minimax HT are displayed in (a) long axis and (b) short axis views 
extracted from a clinical data set.  

Temporal denoising of RT3D ultrasound 

 Temporal denoising is crucial for the localization of moving 
cardiac structures such as mitral valve and myocardial wall 
borders. Since time is involved in the deformation of the 
cardiac wall and in the physics of acquisition of the 
transducer, a best-adapted denoising protocol should include 
temporal analysis. With (2D+T) or (3D+T) ultrasound data, 
clinicians usually need to display 2D slices in very slow 
motion to make their final decision on the exact location of 
myocardial wall borders and small structures such as the 
mitral valve. Our brushlet denoising scheme uses similar 
temporal averaging approaches by incorporating spatial 

coherence in time to improve denoising performance, 
enhance moving structures while at the same time eliminate 
non-coherent noise.  
Working with brushlet basis functions, we initially projected 
the four dimensional volume in the Fourier domain. We 
showed that including the temporal dimension improved 
denoising performance on both phantom and clinical data [6]. 
Processing the data as a four dimensional volume isolates 
dominant texture moving in time. We further extended 
temporal denoising by combining analysis of the time 
dimension in the Fourier and temporal domains. When 
projecting the time dimension on brushlet functions in the 
temporal domain, thresholding of the low amplitude 
coefficients isolates coherent mechanical movements of 
anatomical structures that can be expressed as a sum of 
complex exponentials. Such movements are analogous to 
harmonic pendulum oscillations. We have optimized the 
denoising procedure with phantom and clinical data and 
identified the following sequence which provided the best 
results: (1) temporal denoising in time domain, followed by 
(2) temporal denoising in Fourier domain. Both denoising 
procedures were again performed with four sub-quadrants in 
each dimension and thresholding of (1) all coefficients for 
temporal analysis and (2) lower frequency coefficients for 
frequency analysis. An illustration of temporal denoising in 
4-D combining temporal and frequency analysis is shown in 
Figure 3 below.  

Fig. 3: Spatio-temporal denoising with brushlet analysis. (a) Original slice, 
(b) slice denoised in 3D space, (c) slice further denoised in time with 
temporal analysis, (d) slice further denoised in time with frequency analysis. 

Segmentation of RT3D ultrasound with 2D deformable model  

Our initial deformable model implementation followed 
the work Xu et al. [7] using a finite difference scheme.  
For each slice, the deformable model is initialized as a five 
pixels radius circle inside the cavity to segment. The position 
of the circles is manually initialized for every 10 slices and 
linearly interpolated for slices in between. Internal “balloon” 
forces expand the model along the normal direction while 
external forces, derived from the image gradient, stop the 
model at strong edges. However, with texturized images, it is 
very difficult to define strong edges from gradient 
information without stopping the model at false edges. To 
overcome this issue we had to modify the convergence 
criteria. Incorporating a priori knowledge is essential in the 
situation where several slices show only part of the 
myocardial wall so that no convergence of the model 
reflecting a true equilibrium of the forces can be attained. The 
model deforms under the influence of internal and external 
forces with associated weights defined empirically. The 
model will stop at its final position under two situations: 
either the average position of the set of points over 50 
iterations varies below a certain threshold or the maximum 
number of iterations has been reached.  The threshold value 
and the maximum number of iterations were also selected 
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empirically. The maximum number of iterations was set in 
the range of 300-1000 depending on the cavity size. 
Nevertheless it is important to note here that we have 
identified structural parameters (i.e. elasticity, rigidity, 
viscosity) that performed robustly for the set of 10 patients 
reported in this study. 

III. RESULTS 

Validation with 2D Echo and MRI 

Volumes and ejection fraction were evaluated using RT3D 
ultrasound and MRI. MRI data were acquired either before or 
after the echocardiographic examination.  Manual tracing was 
performed on both RT3D ultrasound and MRI as detailed 
below:  

1) Manual tracing on RT3D data:  
  Typical RT3D volumes contained 300 slices in the long axis 
dimension with a slice thickness of 0.308 mm. Between 10 
and 17 frames were acquired per cardiac cycle. An expert 
cardiologist manually traced endocardial contours on selected 
slices and computed ventricular volumes via sector plane-
disks summation using a dedicated software package. 

2) Manual tracing on MRI data:  
MRI slices were 8 mm thick, without gaps, and were 

acquired at a rate of 40-50ms/frame. An expert radiologist 
manually segmented the entire set of 10-15 slices available 
with a dedicated software package.  

For both modalities, trabeculations and papillary muscles 
were excluded while moderator bands were included inside 
the cavity. Even though manual tracing was performed using 
the same anatomical definition of the ventricular cavity, 
many potential sources of error remain. MRI image quality is 
far superior to RT3D ultrasound but its spatial resolution is 
26 times lower, leading to potential volume effect errors with 
MRI. Manual tracing of RT3D ultrasound was performed on 
long axis slices of the original data while selection of 
delimiting planes at the apex and the valve planes, for the 
deformable model segmentation, was performed by a 
different cardiologist on denoised short-axis slices. Right and 
left ventricular cavity segmentation was performed on 
different volumes for RT3D data but on the same volume for 
MRI. Taking into account these considerations the goal of 
this study will only focus on ejection fraction measures and 
will not compare volume measures directly. Ejection fraction 
(EF) was computed from end diastole volume (EDV) and end 
systole volumes (ESV) as:  

 
( )

% 100
EDV ESV

EF
EDV

−
= × . (5) 

A. Right and left ventricular ejection fractions 
  The ejection fraction measures were evaluated for right 

and left ventricular cavities on a set of 10 patients with 
primary pulmonary hypertension. To assess the agreement 
between the different methods, we performed a Bland-
Altman statistical analysis [8]. We considered measures from 
MRI data as the gold standard and computed errors of RT3D 
measures vs. MRI [9, 10]. Results of the Bland-Altman 
analysis are displayed in Figure 4.  
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Fig. 4. Bland-Altman statistical analysis for LV and RV EF measures with
manual tracing and deformable model (Def. Model) on RT3D ultrasound vs.
manual tracing on MRI. Average EF difference and 95% confidence interval
are displayed on each plot. 
IV. DISCUSSION 

This study focused on patients with primary pulmonary 
hypertension (PPH). This condition results in narrowing of 
the lung blood vessels that leads to increase pressure in the 
right ventricle and eventually heart failure. The cause of this 
disease is unknown, its real incidence difficult to evaluate and 
there are no treatments available to cure or halt its 
progression. Diagnosis of PPH is very delicate since 
preliminary symptoms such as chest pain and shortness of 
breath are not very specific.  Because of the increase in RV 
pressure, the RV volume increases to produce more effort to 
expel blood through the constricted vessels. As the RV size 
increases, its shape becomes round while the LV cavity is 
compressed. These anatomical changes can be easily and 
accurately depicted with an echocardiographic exam. 
Quantification of RV and LV volumes and function can 
further characterize the stage of the disease and its severity.  
Analysis of the results showed that the deformable model 
applied to denoised RT3D ultrasound performed as 
accurately as manual tracing and reduced the 95% confidence 
interval by 34% for RV and 45% for LV volumes! 
Preliminary studies for RV volume measures with 3D 
ultrasound have reported inter- and intra- observer variability 
ranging from 4% to 9% [11]. One study for quantification of 
LV function with RT3D ultrasound reported inter-observer 
variability of 3.9% and intra observer variability of 2.4% for 
EF measure with sector plane-disks summation [9], as 
performed in this study. A similar study for RV measures 
with RT3D ultrasound showed an inter observer variability of 
8.1% for stroke volume [2]. We previously presented results 
for comparison of manual tracing versus deformable model 
using RT3D ultrasound [12]. This study showed that the 
deformable model could achieve 8% accuracy when 
compared to MRI for quantification of LV volumes and 
ejection fraction. Observer variability should be taken into 
account when evaluating the performance of our 
segmentation method and comparing to manual tracing.  

The set of ten patients used in this study presented great 
diversity in the quality of the data and the shapes and sizes of 
the ventricles. The quality of the RT3D ultrasound data 
depended on the acoustic window of the patients and on the 
ability of the cardiologist to acquire a good view of the 



 

 

patient’s heart that included the entire cavity. In several 
cases, acquisition parameters had to be adapted to increase 
the depth setting and the field of view, sacrificing for 
acquisition quality. Because of the enlarged RV cavity, the 
left ventricle can become very small in some patients and its 
shape can become very distorted. The deformable model is  
well adapted in such situations as it can accommodate any 
shape convexity while ensuring continuity and smoothness of 
the contour. Volume ranges for this study were the following: 
RV ESV 50-191 ml, RV EDV 78-250 ml, LV ESV 12-49 ml, 
LV EDV 36-96 ml, RV EF 21-44% and LV EF 41-68% as 
obtained with manual tracing on RT3D. We illustrate the 
variety of RV and LV shapes we segmented in Figure 5 
below for four long axis slices with the deformable model 
segmentation overlaid, and the segmented cavity 
reconstructed in 3D.  

Fig. 5: LV and RV segmentation with deformable model performed on 
denoised RT3D ultrasound for two patients (1 and 2) at end diastole.  

The ability of the deformable model to handle such 
complicated shapes in a robust fashion with the same set of 
intrinsic parameters is very encouraging. Nevertheless full 
automation of the segmentation process remains very 
challenging for two reasons. First, automatic initialization of 
the model is very difficult because of the presence of tissue 
inside the cavity such as moderator band. When initializing 
the model on top of such tissue, the model grows over it and 
includes it in the cavity,.while initializing next to the tissue 
makes the model stop at its border and can lead to part of the 
cavity not being included in the final segmentation. The 
second reason deals with the number of iterations, or more 
generally convergence criteria. As the ventricle size 
increases, the number of iterations required for the 
segmentation increases. But it is very delicate to increase the 
maximum number of iterations in every case since the septum 
wall that separates the two cavities very often shows low 
echo signal.   In such situations, too many iterations can push 
the model to reach some equilibrium state and then further 
expand to pass over and include the adjacent cavity in the 
final segmentation. Potential improvements of the method 
include extension to 3D deformable surface [13, 14] to 
improve smoothness of the model in the third dimension and 
have a better control of the deformation constraints, 
multiscale approaches to speed up the segmentation by 
initializing with contours closer to the final solution and the 
use of automatic definition of structural parameters such as 
the medial axis as developed by Pizer and Stetten [12].  

V. CONCLUSION 

Quantification of RV and LV volumes with 2D ultrasound 
transducers is commonly performed via segmentation of the 

cavity on the planar view. Because of its crescent shape, RV 
volumes are never estimated from 2D images and can only be 
coarsely estimated with freehand and rotational 3D 
ultrasound. We have shown in this study that RT3D 
ultrasound can reconstruct and quantify accurately RV and 
LV ejection fraction in patients with primary pulmonary 
hypertension at various stage of severity. Potential 
applications include an improved diagnostic tool for 
assessment of PPH disease and better monitoring for drug 
treatment. This new RT3D ultrasound technology also offers 
the possibility of reconstructing RV and LV cavities in time 
for wall deformation analysis with patient specific dynamic 
models of the heart. Such application is of great importance 
for localization of ischemic tissue and septal wall defect and 
stress-echo echocardiography testing.  
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